Evaluating Hydropower Reliability as Baseload: Insights from the Batoka Gorge Hydro-Electric Scheme Potential During El Niño Events.

Abstract: Hydropower remains the dominant source of electricity generation in Zambia amounting to 85% of the country's installed capacity. Dependence on hydropower for electricity generation places increasing importance on assessing its reliability, especially under extreme climatic events such as El Niño. The proposed Batoka Gorge Hydroelectric Scheme (BGHES), with an installed capacity of 2,400 MW at a design flow of 1,645 m³/s, has the potential to complement existing sourcing of Energy in Zambia and Zimbabwe including serving as a critical baseload power source. This study evaluates the hypothetical performance of the BGHES during the worst rainfall seasons recorded in recent years 2022/2023 and 2023/2024 both affected by El Niño conditions that significantly reduced inflows into the Zambezi River basin. Based on analysis of daily flow data for these periods, the 2022/2023 season recorded an average inflow of approximately 1,173.22 m³/s. Under this scenario, BGHES would have been capable of generating an average of 1,711.68MW, producing an estimated 14,994.34 GWh of energy across the season. In contrast, the 2023/2024 season was notably drier, with an average inflow of only 547.17 m³/s which would have yielded a generation capacity of about 798.30 MW and an annual energy output of approximately 6,993.14 GWh. These findings buttress the need for additional hydropower schemes on the Zambezi River to be operated conjunctively during both high flow and waterscarce seasons to ensure efficient, reliable, and sustainable water utilization, which is essential for meeting diverse socio-economic needs and maintaining ecological health. Hydropower projects like BGHES can play a critical role in stabilizing power supply in both Zambia and Zimbabwe, even under adverse climatic conditions. While output may reduce during drought years, the plant would have contributed significantly to the grid, making it a reliable baseload option. The assessment highlights the necessity of investing in resilient hydropower infrastructure and underscores the strategic importance of BGHES in Zambia and Zimbabwe for long-term energy planning amidst climate uncertainty.

Keywords: Hydropower, El Niño, BGHES, Zambezi River, Energy Security, Renewable Energy.

1. INTRODUCTION

Hydropower remains the cornerstone of electricity generation in Zambia, accounting for approximately 85% of the nation's installed capacity. However, this heavy reliance on a single energy source renders the power sector highly vulnerable to climate-induced hydrological variability.[1] Extreme climate events such as El Niño severely disrupt regional rainfall patterns, leading to reduced river inflows and threatening the reliability of hydropower generation.[2]

The BGHES, Hydropower plant, presents a strategic opportunity to bolster energy security in both Zambia and Zimbabwe. As a potential baseload facility, BGHES could play a critical role in stabilizing electricity supply even under adverse hydrological conditions.[3]

The El Niño-Southern Oscillation (ENSO) is a major driver of inter-annual climate variability in Southern Africa. El Niño episodes are typically associated with delayed onset and premature cessation of rains, extended dry spells, and overall suppressed precipitation across the region[2]. The hydrological years 2022/2023 and 2023/2024 were both characterized by strong El Niño conditions, which led to significantly below-average rainfall in the Zambezi River Basin and corresponding reductions in river inflows. These drought conditions posed serious challenges for water-dependent sectors, including agriculture, ecosystem services, and hydropower.[2]

This study assesses the hypothetical performance of BGHES during these two severe El Niñoaffected seasons by analyzing daily inflow data to estimate potential power output and seasonal energy generation. The findings provide insights into the resilience of BGHES under climatestressed scenarios and highlight the importance of climate-informed hydropower planning for sustainable and reliable energy development in Southern Africa.

2. Overview of Batoka Gorge Hydroelectric scheme

The proposed BGHES is a major renewable energy infrastructure project strategically positioned within the central portion of the Zambezi River Basin, one of the largest transboundary river systems in Africa. The project site is geographically located at latitude 17° 55' 38.55" South and longitude 26° 6' 28.38" East, precisely along the international boundary between Zambia and Zimbabwe, making it a binational endeavor under the jurisdiction of the Zambezi River Authority (ZRA)[3].

Figure 1: Location of BGHES on the Zambezi River

The BGHES is designed as a run-of-the-river project, which will rely primarily on the natural flow of the river to generate electricity, thereby reducing the ecological footprint compared to traditional storage dams. The scheme will consist of a high arch gravity dam, and two underground power stations one on each side of the river with an expected combined installed capacity of 2,400 megawatts (MW)[3].

The project aims to significantly boost the electricity supply for both Zambia and Zimbabwe, addressing current power deficits and supporting future economic development. Additionally, by generating clean and renewable energy, the BGHES will contribute to climate change mitigation efforts and the Southern African Power Pool (SAPP) through potential power exports to neighboring countries[4].

3. Methodology

3.1 Data Collection

The Inflow data was collected from the Victoria Falls region, particularly at Nana's Farm station located approximately 33 kilometers upstream of the falls. This station, operated by the Zambezi River Authority, is equipped with modern hydrometric instrumentation to continuously measure river flow conditions[5]. The inflow data was collected for every day of the year, capturing both seasonal variations and inter-annual fluctuations in river behavior, including during flood peaks and low-flow periods for the two seasons under investigation.

The daily inflow data were analyzed and aggregated into monthly average inflows, as illustrated in Figures 2 and 3 below.

Figure 2: 2022/2023 Average monthly inflows

Figure 3:2023/2024 Average monthly inflows

The inflow data facilitated simulations of potential power generation and seasonal energy output, offering valuable insights into the projected performance of the plant under El Niño-induced drought conditions. During the 2022/2023 and 2023/2024 seasons, the average annual flow rates were 1,173.22 m³/s and 547.17 m³/s, respectively. These figures, coupled with high standard deviations, indicate significant variability in water availability.

4. Data Analysis

4.1 Power Calculation

The estimated energy and power outputs for the BGHES were calculated using a combination of hydrological flow data, turbine performance metrics, and empirical relationships from the 2019 Engineering Feasibility Study (EFS) conducted by Studio Pietrangeli. A static reference model was employed to correlate daily and monthly flow volumes with corresponding turbine power outputs, incorporating efficiency curves specific to the proposed turbines. The model assumed optimal operational conditions, such that whenever the mean monthly flow equaled or exceeded the design flow threshold of 1,645 m³/s, the plant would operate at full capacity (2,400 MW). For sub-optimal flow periods, partial generation was estimated using analytical established relationships between reduced flow and proportional power output[6]. The total power generation for each year was obtained using the design flow rate and plant operating capacity as illustrated below.

Power calculation for 2022/2023:

$$P = \frac{Q}{1645} \times 2400MW$$
$$P = \frac{1173.22}{1645} \times 2400MW$$
$$P = 1711.68MW$$

Power calculation for 2023/2024:

$$P = \frac{Q}{1645} \times 2400MW$$
$$P = \frac{547.17}{1645} \times 2400MW$$
$$P = 798.30MW$$

4.2 Energy Calculation

Once the power output was calculated, the energy generation for each season was determined by multiplying the estimated power output by the total number of operating hours in a year. For annual calculations, the time is typically taken as **8,760 hours**.

Energy was computed using the formula:

$$E = P \times t$$

where:

E= Energy in Gigawatt-hours (GWh).

P= Power output in Megawatts (MW)

t = Total time in hours,

Energy Generation for the 2022/2023 season:

 $E = P \times t$

P=1711.68 MW t = 8,760 hours $E = 1,711.68 \times 8760$ E = 14,994.34GWh

Energy Generation calculation for the 2023/2024 season:

$$E = P \times t$$

P= 798.30MW t = 8,760 hours

 $E = 798.30MW \times 8760hrs$

E = 6993.14GWh

5. Results and Discussions

The analysis of inflow data for the 2022/2023 and 2023/2024 hydrological years revealed significant seasonal variability in the performance of the BGHES, primarily driven by El Niño-induced drought conditions. The results indicate how these fluctuations in river inflow would have directly impacted power generation capacity and total energy output, had the BGHES been operational during this period. Figure 4 below provides a comparative analysis of the power and energy generation from the two seasons.

Figure 4: Energy and Power comparison for the 2022/2023 and 2023/2024 seasons

The 2022/2023 Season had an average inflow of **1,173.22 m³/s** and the plant would have operated at approximately **1,711.68 MW** of generation capacity. Over the course of the year, this translates to an estimated total energy production of **14,994.34 GWh**. This level of output reflects a strong hydrological year, allowing the BGHES to operate near its designed capacity and contribute significantly to regional electricity demand.

The 2023/2024 Season in contrast, experienced much lower inflows, averaging **547.17 m³/s**. As a result, the effective generation capacity would have dropped to **798.30 MW**, with a corresponding annual energy production of **6,993.14 GWh**. Despite being a substantially drier year, the BGHES would still have maintained a meaningful level of energy production, underscoring its ability to function reliably as a baseload power plant even under hydrologically stressed conditions.

These findings suggest that, had the BGHES been operational, it would have made a significant and consistent contribution to the regional power grid across both seasons. In the wetter year, it would have provided high-capacity generation, while in the drier year, it would have helped mitigate the impact of reduced supply from other sources. This highlights its strategic importance as a long-term renewable energy asset, capable of enhancing grid stability and reducing reliance on thermal or emergency imports during periods of climatic variability.

6. Conclusion and Recommendations

The BGHES holds significant potential as a reliable baseload power source, even under El Niñoinduced droughts. To maximize its benefits, the study recommends:

- 1. Integrated Water Management: Coordinated operation with existing hydropower plants to optimize resource use.
- 2. Climate Adaptation Strategies: Incorporating climate-resilient designs and predictive modeling into future hydropower projects.
- 3. Policy Support: Governments and stakeholders should prioritize funding and policy frameworks for sustainable hydropower development projects.

This study contributes to the broader discourse on long-term energy planning in Southern Africa by highlighting the strategic role of the BGHES in enhancing regional energy resilience.

7. References

- [1] Z. Limited, "Integrated Report 2020," Lusaka Zambia2020, Available: https://zesco.co.zm/investments/assets/documents/annual_reports/ZESCOIntegrat edReport2020-20220818113110.pdf.
- [2] N. V. S. Costas Varotsos, "A Composite Tool for Forecasting El Niño: The Case of the 2023-2024 Event," 2024.
- [3] Z. R. Authority, "Batoka Gorge Hydro-Electric Scheme Project Overview Document."
- [4] S. A. P. P. (SAPP), "SAPP Market Reports," 2023, Available: <u>https://www.sapp.co.zw/</u>.
- [5] Z. R. Authority, "Hydrological Records, Nana's Farm Station (1994–2023)," Zambezi River Authority, Lusaka Harare2023.
- [6] S. Pietrangeli, "Batoka Gorge Hydro-Electric Scheme: Engineering Feasibility Study.,"
 Studio Pietrangeli2019.

8. Authors

Author

Tongil Hambalo is a Mechatronics Engineer with over two years of experience in the Renewable Energy Sector. She has contributed to the Kariba Dam Rehabilitation Project and is currently working on the Batoka Gorge Hydroelectric Scheme. Drawing from her involvement in both projects, she applies the Hydropower Sustainability Standard to promote best practices in technical, environmental, and social aspects of hydropower development.

Co-Author

Patrick Sipatela, holds a MEng and BEng from The University of Zambia, including project management certification from the University of Cape Town. He is a distinguished Engineer with over 13 years of experience and has excelled in roles such as Designs Manager, Technical Manager, Project Manager including provision of technical advisory as an independent consultant leading complex construction projects with high-level technical expertise and project management skills.Renowned for driving organizational efficiency and ensuring compliance with Health, Safety, and Environmental regulations, Patrick adeptly manages cross-functional teams throughout the project lifecycle. He builds robust stakeholder relationships to achieve project goals and has extensive experience in construction project management, risk management, environmental compliance, and quality assurance. He is a Professional member of the Engineering Institution of Zambia and passionately leads the ambitious 2400MW Batoka Gorge Hydro-electric Scheme for the Zambezi River Authority.

Co-Author

Munyaradzi C. Munodawafa is an Electrical engineer with more than 40 years of experience in the Energy Sector, ranging from power engineering, fossil fuels, renewable energy, water resources and large dam management. Currently implementing the US\$ 300 million Kariba Dam Rehabilitation Project and concluding the pre-development activities for the development of the 2400 MW Batoka Gorge Hydro-Electric Scheme. He possesses diverse experience in water resource engineering and environmental management. He is a Fellow of the Zimbabwe Institute of Engineers (ZIE), Corporate Member of the Engineering Institute of Zambia (EIZ); and a Contributor to the Engineers Without Borders programmes, jointly organized by the Zimbabwe Institute of Engineering and the Engineering Institute of Zambia.

Co-Author

Kwanga Miyanza is an Environmental Engineer with 15 years' experience in mining, manufacturing, and environmental consultancy. Currently working for ZRA as EHS Officer on the BGHES project.

9. Appendix

Appendix A: Hydropower Generation Assumptions

Source: Studio Pietrangeli, 2019 Engineering Feasibility Study (EFS)

Flow Rate (m ³ /s)	Estimated Output (MW)
≥1645	2400MW
< 1,645	Proportional Derating Based on Flow

Note: These estimates are derived from the Geofat triangle diagrams provided in the 2019 EFS, which link flow rates to hydropower output under design conditions.

Appendix B: Daily Inflow Data(m³/s) for 2022/2023

DAY	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
1	308	238	345	502	890	2483	2255	1893	2635	1485	665	436
2	305	248	348	521	928	2519	2240	1917	2612	1451	650	432
3	303	251	347	530	952	2539	2227	1932	2584	1414	637	425

4	301	253	344	525	978	2550	2206	1954	2548	1383	627	414
5	296	248	345	534	1006	2564	2182	1990	2514	1350	616	409
6	294	251	348	536	1022	2569	2165	2023	2480	1316	605	409
7	293	257	352	586	1039	2578	2152	2057	2445	1282	597	405
8	289	249	354	564	1054	2580	2135	2095	2409	1250	587	399
9	286	246	367	560	1072	2580	2114	2135	2369	1218	579	395
10	283	247	372	559	1111	2582	2086	2182	2330	1162	567	390
11	283	245	390	570	1140	2578	2069	2216	2295	1145	562	386
12	280	247	397	572	1179	2573	2052	2266	2257	1116	554	382
13	279	253	401	579	1218	2562	2031	2308	2212	1099	547	374
14	278	251	402	585	1264	2546	2019	2356	2167	1059	536	369
15	276	253	407	594	1323	2535	2000	2400	2122	1032	530	368
16	274	259	413	601	1412	2530	1979	2447	2082	1002	526	364
17	270	271	442	606	1528	2519	1967	2494	2040	976	517	363
18	270	275	446	613	1690	2512	1948	2532	1998	950	512	360
19	268	280	451	627	1909	2510	1938	2566	1959	923	505	354
20	267	287	458	657	2023	2498	1924	2610	1919	901	500	351
21	265	291	459	664	2167	2465	1913	2635	1874	888	493	347
22	262	295	461	680	2240	2447	1899	2662	1836	851	487	345
23	259	298	463	694	2284	2425	1891	2685	1790	831	481	339
24	257	305	467	745	2325	2407	1883	2701	1754	806	476	338
25	256	309	468	772	2376	2396	1879	2713	1716	784	469	334
26	256	314	476	781	2416	2376	1872	2715	1675	766	463	330
27	251	321	482	790	2449	2354	1870	2718	1634	747	457	329
28	247	337	483	806	2463	2330	1870	2708	1593	729	446	324
29	245	340	487	823		2312	1874	2690	1557	710	444	318
30	242	345	492	836		2290	1885	2674	1521	697	439	316
31	241		499	860		2271		2658		675	439	

Appendix C : Daily Inflow Data(m³/s) for 2023/2024

DAY	Oct	Nov	Dec	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep
1	313	256	330	492	710	799	674	723	920	623	413	306
2	312	261	330	500	713	799	672	726	926	609	407	303
3	306	266	330	504	717	799	670	724	928	597	404	298
4	305	268	335	509	721	800	665	729	930	586	401	294
5	302	272	336	515	724	796	664	735	933	575	397	291
6	300	281	335	525	729	794	664	751	936	564	394	289
7	297	291	330	527	732	796	657	757	938	555	391	287
8	294	290	328	531	739	794	671	764	936	544	388	285
9	292	292	329	538	742	793	716	772	930	535	383	283
10	290	297	331	547	747	793	694	778	933	527	381	279
11	289	297	335	559	754	793	704	785	928	519	377	277

12	289	294	337	570	760	790	703	794	925	514	374	271
13	289	293	345	579	763	784	707	797	918	506	369	270
14	289	293	337	591	763	779	704	803	907	500	367	268
15	289	288	346	606	766	772	704	810	899	493	362	266
16	290	292	359	623	770	769	700	819	887	488	357	264
17	290	293	374	641	772	764	695	823	873	483	354	261
18	285	294	377	654	775	758	694	832	860	476	351	253
19	280	294	382	658	773	751	697	839	846	454	347	253
20	274	297	392	660	778	744	697	845	825	453	345	251
21	272	298	403	671	781	738	695	854	806	451	341	249
22	271	307	417	677	782	729	694	860	788	449	338	245
23	272	307	430	681	784	721	697	865	769	448	335	240
24	272	313	436	682	785	714	698	874	748	446	331	240
25	269	319	447	687	787	708	698	881	727	443	328	238
26	268	318	457	695	790	703	703	887	706	441	326	238
27	266	321	472	698	793	695	705	893	685	437	324	238
28	264	321	482	703	796	690	707	898	667	433	320	235
29	262	325	481	705	796	682	711	904	648	430	317	228
30	259	326	486	710		680	716	909	637	420	313	227
31	253		490	710		675		917		417	309	